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The existing phenomenological theory of ivity i
unsgtisfactory since it does not allow u?to d:tl:alg?r?: (illigt;‘llllrti)"acltsa
tens1pn at the boundary between the normal and the supercon-
ducting phases and does not allow for the possibility to describe
correctly the destruction of superconductivity by a magnetic; field
or current. 1In the present paper a theory is constructed which is
f‘ree from these _faults. We find equations for the ¥-function of the

supercondugtmg clectrons  which we introduced and for the
vector potentlal. We have solved these equations for the one-
dimensional case (a superconducting half-space and flat plates)

The the.oyy makes it possible to express the surface tension in te'rms
of the _crmcal magnetic field and the penetration depth of the
magnetic field in superconductors. The penetration depth depends
in a sirong field on the field strength and this effect will be especiall
evident in the case of small size superconductors. The destructior}ll
of superconductivity in thin plates by a magnetic field is through a
secoqci;order phase transition and it only becomes a first-order
trz.u?smon _starting with plates of a thickness more than a certain

critical tlyckness. While the critical external magnetic field in-
creases with decreasing thickness of the plates, the critical current

for destroying the superconductivit
' { y of plates d i -
creasing thickness. ? coreases with de

Introduction

IT_ is well known that there exists at present no properly developed
chrosc?opic theory of superconductivity. At the same time tl?ere
is a fairly widespread view that the phenomenological theory of
superconductivity is in a much more satisfactory state and is reliabl
based on the equation of F. and H. London?!s 2: ’

. 1
curlAj, = — Z’H’ (M)

tWith V. L. Ginzburg, J. Exptl. Theoret. Ph
1064, 1950. o (USSR, 20,
138
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where A is a quantity depending only on temperature, j; is the super-
current density, ¢ is the velocity of light and H is the magnetic field
strength, here identical with the magnetic induction. Equation (1)
in combination with Maxwell’s equation, curl H = 4mj, /e, and the
equations div H = 0 and div j; = 0, leads under stationary condi-
tions to the equations:

V2ZH — H/6> = 0 and V%, — j,/6% = 0, where 8% = A c*/4n. (2)

For a plane boundary between the superconductor and vacuum or a
non-superconductor these equations have solutions:

¢
H = Hye ¥ and j,=-—H, 3

o€ ana j s 4 T 5 ( )

in which the external field Hj, is taken as parallel to the boundary,

which is normal to the z-axis. For a film of thickness 2d in a parallel

field we get:
H = H, cosh (z/8)/cosh (d/5),

Jo= - %—% sinh (z/8)/cosh (d/d), 4)

if z = 0 at the centre of the film.

For a superconductor of arbitrary shape it follows from (2) that
the field penctrates only to a depth of the order of 8, which is
according to experimental data about 10™ 5 ¢m. Qualitatively, this
result is, of course, in agreement with the fact that a magnetic field
does not penetrate into the body of a superconductor; quanti-
tatively, however, there is no certainty that equations (1) to (4) are
always correct. Moreover, this theory throws no light on the
question of the surface encrgy at a boundary between super-
conducting and normal phases of the same metal, and also leads to
a contradiction with experiment concerning the destruction of super-
conductivity of a thin film by a magnetic field.

The thermodynamic treatment of the transition of a film of thick-
ness 2d from the superconducting to the normal state leads? > to
the following expression for the critical field, H:

(I%)z ~ (1 - %tanh ‘-;)—1 (5)
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in which H, is the critical field of the bulk material. This expression
is not in agreement with experiment. Thus, if at a given temperature
the constant 6 is determined from measured values of (H./H4)? for
various values of d, according to (5), then this * constant > 0
depends markedly on d; for example, if 7 = 4° then for d=
03 x 107 cm, § = 34 x 1075 cm, while ford = 1-2 x 10-5 cm,
5 =2x 1075 cm.

It has been pointed out?® that the position may be improved by
taking into account the difference of the surface energy at the
boundary of the metal with a vacuum according as the metal is in
the superconducting or the normal state; the difference of surface
energies, o, — a,, introduced for this purpose must be of the order
of 0H3/8z. Now the surface energy is usually equal to the bulk
free energy per unit volume times a length of the order of atomic
dimensions. Thus here, where the difference of free energies is
HZ /87, one might expect o, — o, to be of the order of 10~7 to 10-8
times H3/8n and not 10~° H32/8x. An even more contradictory
situation arises at the boundary separating the normal and super-
conducting phases of the metal; the surface energy connected with
the field and supercurrent here as predicted from the solution of
equation (3), is equal® * to —6H2/8x, i.e., is negative. Thus in
order to obtain the observed positive surface energy o,., it is neces-
sary to introduce a surface energy, o, of non-magnetic origin,
which is given by the equation:

. SH?
Ons = Opg + 8
A

and which is greater than §H2/8z. There is no Justification for
introducing such a relatively enormous energy o,, not connected
with the field distribution. On the contrary one would expect any
rational theory of superconductivity to lead automatically to an
expression for o, in terms of the ordinary parameters characterising
the superconductor.

The thecry based on equation (1), even with the additional surface
energy, does not enable the destruction of superconductivity in thin
films by a current® to be considered, since this problem is not of a
thermodynamic nature.
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The aim of the present work is the construction of a theory free
from these defects. Incidentally, as we shall see, the theory leads
also to a number of new qualitative conclusions which may be
checked experimentally.

1. Basic Equations

In the absence of a magnetic field the transition into the super-
conducting state at the critical temperature T, is a phase transition
of the second kind. In the general theory of such transitions? there
always enters some parameter # which differs from zero in the
ordered phase and which equals zero in the disordered phase. For
example, in ferroelectrics the spontaneous polarisation plays the role
of n and in ferromagnetics the spontaneous magnetisation®. In the
phenomenon of superconductivity, in which it is the super-
conducting phase that is ordered, we shall use ¥ to denote this
characteristic parameter. For temperatures above T, ¥ = 0 in the
state of thermodynamic equilibrium, while for temperatures below
T, ¥ # 0. We shall start from the idea that ¥ represents some
“effective ” wave function of the “ superconducting electrons *’.
Consequently ¥ may be precisely determined only apart from a
phase constant. Thus all the observable quantities must depend
on ¥ and ¥* in such a way that they are unchanged when ¥ is
multiplied by a constant of the type ¢®. We may note also that
since the quantum mechanical connection between ¥ and the
observable quantities has not yet been determined we may normalize
W in an arbitrary manner. We shall see below how we must carry
out this normalisation in such a way that |¥|* shall equal the
concentration, n,, of * superconducting electrons ** introduced in
the usual way.

Consider first a uniform superconductor in the absence of a
magnetic field, and suppose that ¥ is independent of position. The
free energy of the superconductor is then in accordance with the
general theory of second-order phase transitions, dependent only
on I‘P |2 and may be expanded in series form in the neighbourhood
of T.. Thus near T, we may write for the free energy F,,,

Fy, = F + a|¥[* + g [ |* (6)
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In equilibrium

ok, 0*F,
o = o) >

and in addition we must have that |¥|> =0 for T 2 T, and
[¥|> > 0 for T> T,. It follows therefore that o, = 0, B. > 0,
and for T < T,, @ < 0. Thus in equilibrium, for T < T,

T.— T tda
P2 = g 2= e “2
] ¥l B Be (dT)c,
and
a? (T, — T)? (da\>
Fso_Fno—@_Fno_z—ﬁc-(ﬁ); (7)

in which it is taken into account that, within the limits of validity
of the expansion (6), (7)) = (do/dT) (T, — T) and B(T) = B,; the
choice of the subscript co for ¥ is determined by considerations of
convenience which will become evident from what follows. The
quantity £, in (6) and (7) is evidently the free energy of the normal
phase. Well-known thermodynamic considerations show (see also
below) that F,, — F,, = HZ /8n, where H, is the critical magnetic
field for a bulk specimen and the free energies, as everywhere in this
paper, relate to unit volume. Thus from (7),

2 _
ch—

470 _ 4n(T, — T)? (@)2 @®

B Be arj.’

The form of this expression is well known to be completely con-
firmed by experiment, which therefore provides a foundation for the
assuraptions made above.

Consider now a superconductor in a time-independent magnetic
field. In order to obtain the density of total free energy Fog, it is
now necessary to add to F,, the field energy H?/8x and the energy
connected with the possible appearance of a gradient of ¥ in the
presence of a field. This last energy, at least for small values of
|grad W |2, can as a result of series expansion with respect to |grad ¥ |2
be expressed in the form const |grad W|?, i.e., it looks like a kinetic
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energy density in quantum mechanics. Thus we shall write the
corresponding expression in the form

2 1
(Zn) |grad ¥|? = 27” | — ik grad |2
in which % (= 1-05 x 10727 gem? sec™1) is Dirac’s constant and 2 is a
certain coefficient. We have not,however, taken into account as yet the
interaction between the magnetic field and the current connected
with the presence of grad ¥. In view of what has been said, and the
requirement that the whole scheme shall be gauge-invariant, we must
allow for the influence of the field by making the usual change of
—ik grad to (—ik grad — ed/c), where A4 is the vector potential
of the field and e is a charge, which there is no reason to consider
as different from the electronic charge. Thus the energy density
connected with the presence of grad W and the field H takes the
form

2 1 2
Bl ~ — ihigrad ¥ — & ap
8 2m ¢
Consequently
H* 1 e 2
Fop = = 4+ | —ikgrad¥ — - 4
w=Fat g 4o | - emaw -Sav | )

The equation for ¥ may now be found from the requirement that the
total free energy of the body, | F,,dV, shall be as small as possible.
Thus, varying with respect to 0¥, we find that
1 e \? oF

— | — ik ——A} ¥+ = =

2m( if grad - ) + Ty 0 (10)
and moreover, at the boundary of the superconductor, in view of
the arbitrariness of the variation 6¥*, the following condition must
hold:

(n-[ —iﬁgrad‘P—SA‘P:l) =~ 0, (11)

where n is the unit vector normal to the boundary. .
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The condition (11) is obtained if no supplementary requirements
are imposed on ¥ (natural boundary conditions); if however it is
demanded from the start that at the boundary with a vacuum
¥ = 0 then (11) is not obtained. But the condition ¥ = 0 or const
is not admissible in the present scheme, since then there would be
no solution to the problem of the superconducting plate except for
particular values of the thickness 2d. We therefore impose no
further conditions on ¥ at the boundary with a vacuum, and are
thus led to (11). At first sight this result may appear unacceptable,
since it is natural to demand that the wave function at the boundary
of a metal should vanish. The essence of the matter, however, lies
in the fact that the W-function introduced above is in no way a true
wave function of the electrons in the metal, but is a certain average
quantity.

We may suppose that our function W(r) is directly connected
with the density-matrix p(r, ') = [¥(r, )P, v;)dr], where P(r, r))
is the true wave-function of the electrons in the metal, depending
on the coordinates of all electrons, ri(i = 1, 2,... N); the r| are
the coordinates of all the electrons except the one considered, whose
coordinates at two points are taken as r and #’. It might be thought
that when ]r — r'| > 00, p = 0 for a non-superconducting body
having no long-range order, while in the superconducting state

= po(# 0). It is reasonable to suppose now that the density-
matrix is connected with our W-function by the relation p(r, r') =
Y)Y (r').

So far as the equation for A4 is concerned, if we assume that
div 4 = 0 and vary the free energy with respect to 4 we obtain the
usual expression:

4 . 2miek 47e?
— — e ——— ¥ — * - 2

o A (W* grad ¥ — W grad ¥*) + 3 | |24,
(12)

in which the right-hand side contains the expression for the super-
current:

V4 =

. iek e
i=-% (¥* grad ¥ — W grad ¥*) — — WP*¥4.
m mc
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It should be noticed that an expression analogous to (11) is obtained
for the quantity in brackets, from which it is evident that at the
boundary (j+ n) = 0, as required. The solution of the problem of
the distribution of field and current in a superconductor is now
reduced to an appropriate integration of equations (10) and (12).

We shall examine below only the one-dimensional problem, with
the z-axis normal to the boundary separating the superconducting
phase (z > 0) from the normal phase or vacuum; we shall take the
field H as directed along the y-axis and the current j and vector
potential A along the x-axis (thus H, = dA,/dz, or simply H =
dAJdz). In the one-dimensional solution it is natural to consider
|¥|? as dependent only z, so that ¥ = ¢9NP(z),  However,
bearing in mind the gauge-invariance of the equations, we may by
a suitable choice of A arrange that ¥ = Y¥(z) and hence j =
— (€*/mc)|¥|?4 (from the conditions that divj = dj/dz =0 and
(j + n) = 0it follows that j, = 0). Moreover the equations do not
now contain the imaginary i (since (4 - grad ¥) = (4i- (d¥[dz)k) = 0),
and we may therefore consider ¥ as real. Consequently equations
(10) and (12) take the form:

¥ 2m e? 2 2m 4
-Zz-i+_f72|al(l—2mc2|a|~A)\P—?ﬁT = 0,

d’A  4ne*

a2 _ w2y

dz?  mc? ¥ 0 (13

in which equation (6) has been used, with the additional fact that
o> 0.

Let us now determine the surface energy at a plane boundary
‘between the normal and superconducting phasés. In the normal
phase, the total free energy, including field energy, is F o + (H32/8n).
In the region where ¥ # 0 and there is superconductivity the energy
density is F,y (equation 9), and in addition we must take account
of the energy density due to the ‘ magnetisation” of a super-
conductor in a field parallel to the boundary with the non-
superconducting phase, in the form:

— MH, = —

H(Z) - ch
. oL AL < SN
47 b
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where M plays the role of the magnetisation. Thus the surface
energy may be written:

2
O'ns-:J\( sH()—H(z?n +-%E—Fna_.'1_{—)dz (14)

in which the integration is extended over the transition layer between
the phases (the z-axis is normal to this layer). It is readily verified
that the integrand vanishes at great distances from the transition
layer, for in the superconducting phase H = 0 and F,, = F,, =

F, — oc2/2,8 (see equation (7)), while in the normal phase, ¥ = 0,
Fgu= H} /87 and H, = H,. From equations (7)-(9),
ﬁ‘P"' cx2 (d‘P)
= | {a¥? + —
Ops J‘ {oc N + ﬁ 7
H? _ HyuH
2mc 8 4n }dz. (15

From the minimum condition for o, which is the free energy per
unit area, we may of course obtain both the first of equations (13),
by variation of (15) with respect to ¥, and the second of equations
(13), by variation with respect to 4.

At the boundary of a superconductor with a vacuum in the one-
dimensional case the condition (11) assumes the form

ay
dz

We shall now introduce the following parameters,
and in addition new variables, z’, ¥, A’ and H':

(16)

Hy, 6, and

1{;2 2 2
Z’=Z/50,‘P’2 i k4 A = ,\/_ﬁi— - A =L’
el 2me? Ju| V2Hud,
d4’ 1 H mc?p mc?
,HI = = — , — 2 = =
dz’ /2 H' % 4ne’|o|  Ame*¥2 (1)
dma? 1 (me\? 2¢?
H — 2 _ _ |I& 4
cb ﬁ Qs K Zﬂ(eﬁ) B h_z 2H 5
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Equations (13) now take the form:

2
vy
dc-i_z = K'z[ - (1 - AZ)IP + ‘PS],
2
d—/—I = W24, (18)
dz?

The primes have been omitted from these equations since in what
follows unless we explicitly state the contrary, only the new variables
will be used. With these variables, (15) must be written in the form:
H} 1 [d¥\?

O = =2 60-[ {% — (1 — AH)¥? + ¥4 + 7z (Ez—)

4
dA\? dA\ (dA

+ (dz) _ Z(dz)c(dz)}dz. (19)
If k =0, then from (18) and (16) ¥? = n, = constant, and our
equations go over into equations (2) with 6% = 82 = mc?/4ne’n,
(compare equation (2) with the second of equations (13)). This
result is true in general; if we put grad ¥ = 0 in equation (12) it
becomes equivalent to equation (2), or, more directly, j =
—(e*/mc)|¥|*4, which leads to equation (1). Although for x = 0
our scheme becomes formally identical with the usual theory, it is
substantially different even in this limiting case. For, in equations
(1) and (2) the parameter A(=4n6%/c* = m/ne?) is a constant,
independent of field, at a given temperature, while in our theory,
even for x = 0, the value of W2 which is the same as n, and which
determines, as in equation (20), the valug of 4, is such as to minimise
the free energy, and this results in a variation of the penetration
depth é with H in superconductors of small dimensions.

From the limiting case, x = 0, and from the following discussion
it is clear that the experimentally determined quantity is the para-
meter 62(= mc?/4rne*P2), §, being the penetration depth for a weak
field into a bulk superconductor. It is just this quantity which
enters also into the expression for the dielectric constant
&(= gy — 4ne®¥ 2 /mw?) of a superconductor in an alternating field
of not too high a frequency w (g, is a certain constant contribution
to ¢ from all particles other than * superconducting electrons ).
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The parameter ¥ 3 (= n,), which evidently corresponds to the con-
centration of “ superconducting electrons ”, does not appear as a
measurable quantity, resembling in this way the number of free
electrons in the ordinary quantum theory of metals. Thus in both
expressions we may talk only of the effective number of electrons,
which may be determined from the values ¢ or 3 by attributing to m
the value appropriate to a free electron. Proceeding in this way
we relate the concentration of ‘“superconducting electrons ”
n(= ¥ 2) with the observable quantity 0o (putting e = 4-8 x 10~1°
esu, m = 9-1 x 10728 g) by the equation:

g 2-84 x 10**
2B _ 1 B _ 284 x 10" z
° 47'ce2|oc| 84 x 10 I“I y2 cm (20)

From (20) and from measurements of the critical field H

(=V4za 2,8) we may determine aand . Besides H_, and 8, (or « and
f) there enters also into the theory the dimensionless parameter «:

2
2 (ﬁf 2)H 58 @1)

which, with ¢ = 4-8 x 107!° esu, becomes:
= 464 x 10'*H358, 22

where , is measured in centimetres and H_, in gauss. From the
experimental data discussed in section 4 it follows that for mercury

2 = 04027; x = 0-165; 4/x = 0-406. (23)

2. The Superconducting Half-space

We shall consider first the case of a superconducting half-space
bounded by a vacuum (superconducting for z > 0, boundary at
z = 0). The solution will of course refer also to a sufficiently thick
plate whose half thickness > 1 (or in the usual units d > 6,).
Forz = 0, H = Hy, and forz = co, H = 4 = 0 (the present choice
of A(co0) = 0 is perfectly natural and moreover possible). Further,
for z = co we are dealing with a superconductor in the absence of
a field and far from any boundaries, and consequently solution @)

T Y S

e ==

T
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must apply, i.e., in the new variables ¥2 = 1, d¥/dz = 0. Thus

for z = oo,

d¥

Y2=1,—=H=A4=0. (24)

dz
This solution naturally satisfies the equations (18). As regards the
boundary with the vacuum at z = 0, condition (16) must be satisfied
there; substituting (18) into (24) we see that in the absence of a
magnetic field the presence of the boundary has no influence on the
function W which therefore has the same value everywhere:

Y2=¥2 =1ifH=A4=0. (25)

In the presence of a magnetic field solution (25) of course does not
apply and we must integrate (18) with the boundary conditions (24)
for z = o0 and the conditions
_dd4 d¥
= = H,, T = 0 forz = 0. (26)
The values of 4, and ¥, are not known beforehand.
The equations (18) unfortunately cannot be integrated exactly and
we can indicate only one of their integrals:
dA\*> 1 (d¥P\?
(1 — 4A5)P? — ¥4 + (E) + F(E) = const.  (27)
For the case which interests us the constant is equal to 4 because
of (24), and thus

H? = (%‘;)2 3 — ’—:3 (‘g)z— (1 — A2W2 4 394, (28)

Turning instead to the approximate solution of equations (18), we
now give the solution valid for small values of x (more precisely the
solution will be valid for small values of the product xHZ). In order
to find this solution we substitute

Y=Y, +¢=1+¢for|p| <L (29)

Then in the first approximation up to terms of order ¢4 and ¢2, the
system (18) assumes the form

F
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26, 5 d24
= G

This system may be integrated at once and its solution may be used
for finding the next approximation and so on. The corresponding
solution, with the conditions (24) and (26), up to and including
terms in H3 has the form

= A. (30)

kH} i =j
— —_—Y " 52z ,mkzy/2
ol e )
3 ~(V2k+1)z
A= — Hype * — *Hs 5 {xe_sz__e___
V22 — k%) 44/2 k(K + 4/2)
3k 4+ 3y — 8k —4v2 | a31)
44/2x(xc + 1/2) }
For z = 0, naturally, d¥/dz = 0, H = H, and
KH?2
=] - —0_
o 2 + /2y
_ K + 24/2) .

The biggest of the terms in ¥ neglected in (32) are of the order
x?H§ and in A4 of the order k*H3. The field H, in the equilibrium
state is less than or equal to the critical field H_, for the super-
conductor, which in the new variables is 1/4/2 (see (17)). According
to (32), for k = 0-165 (see (23)) ¥, = 0974 (the equality applies
when H, = 1/4/2), and thus the application of equation (31) here
is completely justified if it is sufficient to determine (¥ — 1) to a
few per cent.

At the present time such an accuracy in the measurement of &,
is far from having been reached.

Since from the experimental data it follows that x < 1, and also
for a reason indicated below the solution of equations (18) possible
for another limiting case when x — oo does not offer any intrinsic
interest, we shall not discuss it.

If x = 0, then in the problem under discussion ¥ = 1 for any
H—this corresponds to the usual theory based on equations (1)

I

i "

S b,
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with A = const. If k > 0, the solution exists only up to a certain
*“second critical field ” H_,. The range of fields H (= 1/4/2) <
H < H_,, represents a metastable (superheated) state in which the
superconducting phase can exist since it represents a relative mini-
mum of the free energy but the absolute minimum of free energy is
already that corresponding to the normal phase. The more detailed
investigation of this question and a calculation of the dependence
of the field H_, on « has not yet been carried through.

Let us now note that for k = 1/y/2 a peculiar instability of the
normal phase of the metal occurs. Indeed, suppose the whole metal
is in equilibrinm, and in the normal state, i.e., H, = 1/4/2. Then it
can be shown that for ¥ = 1/4/2 an instability appears with respect
to the formation of thin layers of superconducting phase in the
sense that solutions of (18) appear with ¥ s 0. In fact, assuming
that ¥ < 1, we can take H = H, = const and the first equation
(18) assumes the form

2
d—g = — k?(1 — H:Z*Y. (33)

dz
This equation in its form coincides with the Schrédinger equation
for the harmonic oscillator and is well known to have solutions for
¥ which vanish for z = 1+ o0 if Kk = 2Hy(n + %), where n = 0, 1,
2

3 v

Since for the normal phase Hy = 1/4/2, the minimum value of x
for which solutions can appear is 1/4/2. The point z = 0 chosen
in (33) is quite arbitrary, i.e., a * parasitic ” solution can appear
anywhere, and indeed there occurs a certain instability of the normal
phase connected with the fact that when x > 1/4/2 the surface
energy 6,, < 0 (see end of section 3).

It has not been necessary to investigate the nature of the state
which occurs when x > k, since from the experimental data, it is
true somewhat preliminary and worked out on the basis of equation
(22), it follows that k < 1. Leaving on one side the question of the
true value of x, we must in any case, because of the indicated
instability of the solution, note that all results obtained by us are

valid only for the case
1

V2
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We may use the solution (31) to investigate the dependence on
field strength of the penetration depth of a magnetic field in a bulk
superconductor®!°, In agreement with the experimental method
of measurement 1% we define the penetration depth of a magnetic
field in a bulk superconductor in the following way:

[ 5o [ |40
= — | Hiz = 22| gz = 5, 120

Hoj z HJ =%y (35)
0 0

where H, is the external field (field at z = 0) and in the first ex-
pression we used the usual and in the second and third the reduced
units for H, H,, Ay and z. Substituting the field (31) into (35) we
have (in the usual units)

B <ol )
8- ol - )

From this it is clear that the quantity J,, as already mentioned,
represents the penetration depth in a weak field. The function f(x)
grows monotonically with x in such a way that f(0) = 0, f{(c0) = 1/8,
and for ¥ < 1, f(x) ~ k/44/2. Thus for Hy, = H, even for x =
1/4/2, 6 = 1-07 §,, and for k = 0-165, 6 = 1:028 §,. If, as was the
case in (12), measurements of é are carried out using a weak and
slowly varying field A, in the presence of a strong field H,, then
(6 — 80)/0o = () Ho[Hy)?, ie., the effect is tripled. We see
that the expected change of 6 with H for mercury, for which accord-
ing to our estimate x = 0-165, is very small and lies outside the
limits of accuracy of measurements achieved in (12) (the data of
ref. 11 on the dependence of 6 on H are probably for reasons
indicated in ref. 12 not true); this is also evident from the fact that
in ref. 11 for a number of cases ¢ varies as H,, rather than as H3t
since it is an even function of H,. As we shall see in section 4 for
thin superconductors the dependence of § on H, is much bigger
than for bulk ones and may be observed in experiments of the type

(36)

T Even in weak fields, where it must necessarily vary as H3.
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described in ref. 10 (thus it is possible that the dependence of &
on H in ref. 10 is real, which does not contradict the absence of a
noticeable effect in ref. 12).

3. The Surface Energy at the Boundary of the Superconducting
and Normal Phases

For the calculation of g, we must find the solution of the equa-
tions (18) for a superconducting half-space limited by a half-space
consisting of the normal phase of the same metal. Since the only
difference between two phases is that in the one ¥ # 0 and in the
other W = Q, it is reasonable to suppose that the transition between
the two phases takes place continuously in some transition layer.
It can be shown that our equations have just such a continuous
smooth solution, and do not for instance lead to a solution satisfying
the conditions of the problem in which the function ¥ vanishes
suddenly at some point. Thus the transition from the super-
conducting phase to the normal takes place in a transition layer in
which for z = c«0 we have the superconducting phase and for
z = — o0 the normal phase. This means that we must seek a solution
of the equations (18) with the boundary conditions

Y=¥Y,=1 H= A—d—lp—Owhenz—oo
dz
Wy 1
q’:qd—z— =0’H=H0=\—/—2-,A=H02+c0nStWhenz="'w-

Gn

In fact, of course, the transition layer has a breadth of the order of
do (more precisely, as we shall see below, of the order of §,/x)
just as the magnetic field in a superconductor falls to zero in a
distance of the order of §, although strictly speaking it vanishes
only at z = co.

Substituting (28) into (19) we obtain an expression for the surface
energy o,,:

O = 12{ 50“g — (1 - A)¥? + P2 — HOH} dz
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HL (1 d¥\2
— 27-5 60J{KZ (:1‘2‘) +H - HoH} dz, (38)

- 0

where the relation (28) has been used, H, has been put equal to
1/4/2 and all quantities under the integral sign are expressed in
reduced units.

In view of the fact that the general case involves the solution of
equations (18) we can give an analytical expression for o, only for
sufficiently small x. In this case in the superconducting phase for
large z (far from the transition region) ¥ = 1 — const e” V2" (see
(30), (31)), i.e., changes only slowly with z. Consequently we shall
seek @ solution of the second equation (18) in the form

A =exp { — [Vdz}. 39)

It is easy to see that this solution is valid, if

=0

Substituting (39) in (28) we find that d¥/dz = x(1 — ¥2)/+/2; i.e

< 1. (40)

" ¥ = tanh ( (41)

i)
provided that the origin of z is suitably chosen. It should be noted
that the solution (41) is at the same time the strict solution of
equation (18) for W(z) in the absence of an external field and subject
to the condition that W(co) = 1 and ¥(0) = 0. From (40) it is
evident that the solution (41) in the presence of a field applies as
long as the inequality

K < /2 sinh? (522) 42)

is satisfied. With this condition, and taking into account (39) and
(41), we find that

A=exp{—[W¥dz} = Cexp[—z-zlncosh (\/2)] 43)
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and
dA
H="=-wa-= —Atanh(\/z)
Forxz<£ 1,
.4
‘P=\7-2,A=Cexp[ 2\/2} k22> 1, (44)

where the inequality xkz2 > 1 is obtained from (42). It is evident that
the approximation (44) is valid if 1/k > z > 1/4/k; these in-
equalities may be satisfied if x is sufficiently small. For an estimate
of the constant C in (43) and (44) we take account of the fact that
H = Hy(= 1/4/2), and consequently |4| < 1/4/2 tanh (xz/+/2), or,
if kz < 1, |4]| £ 1/kz in the region where H ~ 1/4/2. From this,
taking into account that equation (44) still applies as regards order
of magnitude for z ~ ¥~ /2, we find that C ~ x~ /2. Thus at the
boundary of the region of validity of the solutions (41) to (43)
A > 1 (since k € 1). Butif 4 > 1 the equations (18) simplify and
assume the form

d2‘P 242 d*4 _ 2

o7 = A*Y; o YA 45)
Introducing the variables { = zv/k,¢ = ¥/v/k, and B = A+/k,
we obtain from (45) the universal equations

dzd) — $B*; _2?

d A2 T dg*
which likewise cannot be integrated analytically but must be solved
numerically once and for all. However, there is no need even to do
this since it is easy to see that the contribution to o, from the region
where equations (45) and (46) are valid, i.e., the region — w0 < z
k~ Y2 is of the order ¥~ !/3. Similarly the contribution from the
region k2 < z < oo is of the order of k™ !. Indeed, substituting
into (38) the solutions (41) and (43) it is easy to see that the contri-
bution to o, from the terms H? — HyH under the integral sign is a
quantity of order x~ 1/ while

= ¢*B, (46)

@

1 2
(dlp) dz = V2 + terms of the order x~1/2 ;
dz 3k

1/\/x
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the higher order terms are connected with the lower limit of the
integral. In this way, apart from terms of the order of x~1/2,
we have

 S,H2 6, 1895,
Tax = 34/2nK’ H2/8n

It is especially important to emphasise that, for small values of «,
gas > 0, which is absolutely necessary, and the attainment of which
was our main aim. For sufficiently large x, on the other hand,
0ns < O (this is apparent immediately from (38) since H? < H,H),
which indicates that such large values of x do not correspond to the
usually observed state of affairs (as a result of a numerical integra-
tion it turns out that ¢,, = 0 when x = 1/4/2). The value (23)
assumed by us for mercury is very small from all other points of
view but insufficiently small for the applicability of (47), since in
this case 4/« = 0-407. The numerical integration for k = 0-165
leads to a value of about 63, for A, while according to (47) A =
11-45,,.

The thickness of the transition layer is evidently of the order
of dy/x, i.e., about 104,.

,if Vi < L. @7

4. Superconducting Plates (Films)

The solution is one dimensional for plane plates and films as well
as for a half space. Here it is of interest to calculate the critical
magnetic field, H_, for destruction of superconductivity in films and
the magnetic moment of the film in an arbitrary field H,; moreover
when there is a total current J flowing through the film we have to
find the critical value of the current J, to destroy superconductivity,
and also the dependence of J, on a superimposed field H,.

The critical field H_, as is shown by thermodynamic considera-
tions 23, is determined by the relations

H? H

g
8z 8n 4

d
f H @) _ A, H(z) + AF) &, 8)
0
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in which the thickness of the plate is 2d, the z-axis is perpendicular
to the plate with z = 0 at its centre, Hy is the critical field for a bulk
superconductor and AF is the contribution to the free energy density
of the superconductor resulting from penetration of the magnetic
field. In the theory based on equation (1), AF = Aj?/2, and sub-
stitution of equation (4) into (48) leads to equation (5), if surface
energy is ignored. In our case we obtain from (9) and (7)

R? (d¥Y 2 ' 2
AF=F,, +a¥? + }p¥* + ( ) ° Aryp? —(Fm,— °i),

2m\ dz 2mc 2B
and thus
H ) 1 [d¥\?
Rl {%—(I—AZ)‘P2+%‘P4+—5(—) +H*-2H H\ d=
e K\ dz ¢ ’

0

(48a)

in which the new units are used in the integrand. The quantity (48a)
is denoted by o since it is clear from (15) that it is equivalent to the
surface energy integrated with the proper limits.

The magnetic moment of the film per unit area in an external
field H,, parallel to the film, is given by

d
H(z) — H, 1
u=f—QE—wk=£u@—me “9)

where in the transition to the second expression it has been taken
into account that for a film without a total current in an external
field H(z) = H(—2z). A(d) has been substituted for

d
{ H(z)dz,
0
since the potential 4 will be chosen below in such a way that
A(0) = 0. Equation (49) can be obtained either from the fact that

the work of magnetisation of the film is given by

-ty = 32 | (a1, ~ Ho
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or directly, from the fact that the field H(z) plays the role of magnetic
induction B(z), and thus the expression (H(z) — H,)/4= is equivalent
to the magnetisation M = (B — H)/4n.
For the determination of H, u and J, we must find the solution

of equations (18) with the boundary conditions

d¥y 2

— =0, H=Hy+ Hy, H, =,-C-“J, whenz = +d.  (50)

¥4

Here H, is the external magnetic field directed along the y-axis J,
is the total current

d
(J = [ jdz, where j is the current density)
0

flowing along the film in the direction of the negative x-axis, and
2H,(= 4xnJ/c) is the difference between the values of the total field
on both sides of the film due to the current J. If the current J and
the field H, are not mutually perpendicular then there are two non-
vanishing components of the potential 4 (in fact 4, and 4,) instead
of the single component 4, in the case considered above. We should
then have instead of (18) a system of initial equations of the form

2
‘fl—l—f—x {— (1 — 42— 4)¥ + P°),
z d*A
%i =V, 7 =V, )

These equations have to be solved for the conditions
H =on,H =Hy0'_|:HJ,

2nJ d¥

i=> dz_O when z = +d. (52)

The axes have now been chosen in such a way that the total current
has a component only along the x-axis and consequently the field
H, is directed along the y-axis; H,, and H,, are the components
of the external field along the x- and y-axes.

For sufficiently thick plates, i.e., when d » §,, the value H,
may be immediately obtained from the results of section 2 by
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allowing d to tend to infinity in (48). Thus substituting the solution
(31) into (48) we have, for d > J,,

o 5
7= +2d(1 + ;f(x)) (53)

Here f(x) = x(x + 24/2)/8(x + +/2)?, the same function as in (36);
equation (53) is valid up to terms of the order (8,/d)?. To the same
approximation in the usual theory!:? we should obtain the ex-
pression (53) with k¥ =0 (see (5)). Taking (36) into account,
equation (53) may be written in the form
do Ad

He 'Yt aw (54)

where Ad = 8(H ) — &,.
For films of arbitrary thickness the solution of (18) must be carried

out again. The solution of (31) suggests that for thin plates as well
as for thick ones the function ¥ changes only slowly with z, if « is

small. Starting from this supposition, which is subsequently justified,
we 'suppose that

¥ =% +¢, [¢| < ¥, and ¢ =0 when z=0.  (55)

Then equations (18) in the first approximation assume the form

d’ \ )
dz =K {‘I’ —%¥ + 3¥; — D¢ + AZ‘PO b ]

5
24 (56)
2~ td

From the second of the equations (56), taking account of the
boundary conditions (50), we find the values of 4 and H to be

1 H,sinh oz = H,cosh ¥,z
WocoshWod ~ P, sinh ¥,od’

| &Y)
dA HycoshWoz  H,sin Wyz

dz cosh Wod sinh Wod *

Substituting (57) in the first of the equations (56) we find ¢, and from
the requirement that for z = 4 d,d¢/dz = 0, we obtain a trans-
cendental equation determining ‘¥,
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As we shall see in practice we may with sufficient accuracy put
k = 0. We shall therefore give the expression for ¢ and the equa-
tions for ¥, for the case x # 0 only when H, = 0, i.e., for a film
in an external field. In this special case

\Po(\P% -

1) —
¢ = 397 1 {1 — cosh kzV3¥2 — 1}

. xH? 1 — cosh xzV'3¥2 — 1
292v/3%2Z — 1 cosh? Wod : KkV3¥Z — 1

kV3¥Z — 1 (cosh kV3¥Z — 1z — cosh 2¥,z)
29I — 232 — 1)

} NC)

: COTE ]
212 { . sinh 2¥,d  kdV3¥3 — 1 }

2¥,d sinhkdV3¥2 — 1
cosh? Wod {4¥2 — x2(3¥2 — 1)}

In the limiting case k = 0, for arbitrary H, and H,, naturally
¢ =0and -

Y2 _ 1= (59)

inh 2¥od inh 2¥,d
Hg 1 — sin 0 H% 14 s 0
W - 1) = 2¥d ) 2¥od ) )
n-e 2 cosh? Wod 2 sinh? ¥,d

Let us note that for k = 0 the equation for ¥(= ¥, = const) may
be immediately obtained from the condition of minimum free
energy, i.e., from the condition do/d¥ = 0. It is clear from (48),
that this condition gives
d
yZ_1= lJ‘ A%z,
0 d >
0
which leads to (60).

Let us now discuss in somewhat more detail the destruction of
superconductivity in a film by an external field in the absence of a
total current. If ¥ = 0, then ¥ = ¥, = const and the solution (57)
applies with H; = 0. Substituting this solution in (48) we easily
find (in the usual units)
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HN\?* Y2 - ¥? :
(}T") = M, where 7 = ?(;—"—d. (61)
e 1 - Etanh n 0

In this case (x = 0, H; = 0) equation (60) becomes, when H, = H,
or in the usual units when Hy = H_[1/2H,
¥od

H\?  4¥3(¥] — 1 cosh? y
(fl_cb) =1 = Gimb 2y RN =0 (62)

From (61) and (62), from the measured values of H/H_, and from
d,we can determine ¥, and J,. It is easy to see that for small values
of 7 and for H = H, ¥, = 0 and

H,

do
o= VT (63)

Thus in this case we have a second order phase change; with in-
creasing field, W, decreases and at the transition point ¥, = 0. As
is evident from (60), for H; = 0, up to terms of order d? (taking
into account that H3d* may be of the order unity) we have

g2 _ L= (ol Hep) "(d*/653)
O 1 — R(Ho/H)(d*58) "

The transition to the normal state is a second order one ford £ 4.,
where it is easily shown from (61) and (62) that

d, = 4/550]2. @

The point d = d, is a kind of critical Curie point’, and for d > d,
we have a first order transition; i.e., for Hy = H,, ¥, > 0and there
is a latent heat of transition (for d < 4, and for H, = H, we have a
jump in the specific heat; the specific heat of thin plates evidently
depends on Hy).

The penetration depth of the field is clearly from (57) the quantity

%

b=

(65)

and we see that for sufficiently thin specimens the penetration depth
may be appreciably larger than for the bulk metal when H, ~ H,.
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Here (see (49) and (57) with H, = 0)

_ Hy é d _ Hyd l(d)2 E(‘f)4 J
‘u_—Zn(l_dtanhé)_ (27:){35 5\5 + ...},

(66)

From measurements of u we may find the penetration depth § which
according to (65) and (60) depends on H,. v

For x £ 0 all the expressions become exceedingly complicated in
the general case. However, for small values of «, which are the only
ones which interest us, and for not too large values of d, we may
expand all the expressions as series in xd. The result is that, in the
range of thicknesses for which the transition is a second order one,
equation (63) must be replaced by the expression:

HN?  f6o\* 7 , 1 d)2
(;I—;) —6(d) —IOK +14'—00K (50 (67)

C

The value of d, is then given by

4 24

If we take for x? the value (23) then in practice it is hardly necessary
to take into account the term in x2 in (67), (68) and in the analogous
expressions.

The only experimental data on destruction of superconductivity
in films by an external field suitable for a quantitative discussion
are those given in ref. 4 and refer to mercury. The scatter of points,
however, even in these measurements was rather large, and more-
over in the absence of tables the values of H_/H_, had to be taken
from graphs; nevertheless the chief source of error is due to the fact
that the thickness of the films indicated in ref. 4 is some sort of
average value and may, especially for the thin films, differ con-
siderably from the thickness d entering in our formulae in which it is
assumed of course that the film is ideally uniform.

In Table 1 we reproduce the values of &, obtained with the aid of
(63) on the basis of the data for H,/H,, as a function of d given in
ref. 4; the values shown in brackets are those for which the calcula-
tion from equation (63) is already invalid since d > d,. Underneath

d2 = 5(1——7-x+ )55. (68)
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these values in brackets are put the values of 8, obtained directly
from equations (61) and (62).

In the last column are shown the values of 2d, obtained from
equation (64) with the help of the minimum values of &, in the
correspondlng line. From Table 1, as also directly from the graph
given in ref. 4 showing the dependence of In (H /H_) on In 24, it is

TaBLE 1. Values of 3, for mercury (8, and d in units of 10 % cm)

2d
/ 0-596 1 0-340 | 1-178 | 1-423 | 1690 | 2+400 | 4-390 {10-880| 2d.=
T°K

‘\/ssomin
4:13| 5:13 | 461 | 4-07 | 4-17 | 3-80 | 337 | 3-08 | (3-72)| 69
3-56
4121 412 | 406 | 347 | 336 | 327 | 311 | 272 (3+52)] e6:1
3-30
4-10 | 347 | 3-38 | 2-87 | 3-02 | 279 | 2:53 | 228 (321)] 51
2:50
4:05| 2:66 | 2-62 | 2:32 | 227 | 2:08 | 1-86 | (1-80) (2-86)| 4-0
180 | 1-95
4:00| 228 | 231 | 1492 | 1-82 | 1°76 | 1'56 |(1'57) @272)f 3-5
1-57 | 1-70
380 1+69 | 1-62 | 1+40 | 1-28 | 1-24 | 1-10 | (1-31) (2:63)| 2-5
115 | 1-39

3-60 | 1-27 | 1-24 | 1-08 | 0:99 | 0-98 | (0-87)|(1-23)| (2:50)| 1-95
0-87 | 099 | 1-16
3:00| 110 | 1-10 { 0-92 | 0-84 {(0-83)| (0-77)|(1'16)| — 1-61
083 | 0-72 | 0-84
2:50 | 0-92 | 094 | 0-86 | 0-80 | (0:75)|(0-73) | (1-13)| (2:45)| 1-48
075 | 066 | 0-78 | 10

clear that there is a sharp break in the course of this dependence
which sets in as d passes through d, (in Table 1 the single values of
o and the values in brackets according to (63) are s1mply quantities
proportional to (H,/H_,)d; this product falls as d rises to d. and for
d > d_ the sharp rise begins). We are inclined to regard this be-
hav10ur as confirmation of the conclusion that the character of the
transition is different for d < d, and d > d.. The fall of the values
of 8, with rise of d, clearly ev1dent from Table 1 for d > d_, may be
completely explained by the already mentioned dlﬂ'crence between
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the values of d indicated in ref. 4 and the effective values d.g.
Alternatively it is evident that the thinner the film the more will Aogr
depart from d, and that d,; < d. The observed dependence of &,
ondford < d,is in agreement with this picture; but we can see no
reason for the increase with d of the values of d, calculated according
to (61) and (62) when d > 4.,

We must however bear in mind two considerations. First, the
whole of our scheme based on the expansion of F,, and (10) in
powers W2 up to the terms in ¥4 is generally speaking valid only in
the region close to T, in which the relation (8) and the equation

const 52
52 — — Q0
T T,~-T 1-T1T (69)

are valid, where ,, is a certain constant (see (20) and (7). For
mercury the region, where (8) is valid and therefore (69) should be
applicable, lies between T, and 7" ~ 3-80-4-0°K. For smaller values
of T we must in general take into account higher terms in the series
expansion of F, (i.e., terms in ¥* etc. in (18)) and the application
of all the formulae obtained without the substitution of ]oz[/ﬁ by
(dot/dT), (T, — T)/B. is possible only if the non-linear dependence of
|a|/B on (T, — T) is more important than the influence of terms in
W etc. Such a situation is possible, but it could not be assumed
to occur unless it were demonstrated by an analysis of sufficiently
extensive experimental data; this is not possible at present owing
to the absence of the latter. In view of what has been said, the
data of Table 1 for T < 3-80°K may be distorted.

The second consideration which we must bear in mind is that T,
varies considerably from film to film; in ref. 4 all the data were
reduced to 7, = 4-167°K and this operation, evidently inaccurate
for T = 4-12°K and 7 = 4-13°K, may also influence the data in
Table 1 at lower temperatures. The whole question clearly requires
a more detailed experimental investigation; for the moment we
shall take for §, the lowest of the values in Table 1 and compare
them with the data obtained by other methods 1912, Ip doing this
we must consider the fact that in ref. 12 the quantity directly
measured was only d, — §4(2-5°), and that do was calculated by
means of an extrapolation which does not appear a priori valid.
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The values of &, obtained in ref. 10 are based on the previous
measurements with the colloids and are likewise inaccurate; here
also the measured quantity was 8, — 64(2:5°). As can be seen
from Table 2, in which all the quantities must be multiplied by
10~ % cm within the limits of the accuracy achieved up to the present
time the data of Table 1 coincide with those obtained by other
methods (we must especially emphasise that the data of ref. 12
relate to bulk specimens).

TABLE 2.

3, 3o—94(2°5)° 8o 30— 8¢(2:5%) 3, 39— 3¢(2°5°)
T°K from from from from from from
Table 1 Tablel ref. 10| ref. 10 ref. 12| ref, 12

4-13 3-08 2:42 4-08 328 228 1-82
412 272 2:06 3-57 277 2:04 1:58
4-10 228 1-62 2-80 2:00 1-72 1:26
4-05 1-30 1-14 2-34 1-54 1-31 0-85
4-00 1-56 090 1-95 1-15 1-10 0-64
3-80 1-10 0-44 1-38 0-58 0-77 0-31
3-50 0-87 0-21 — — 0-61 015
3-00 0-72 0-06 — — 0-50 0-04
2-50 0-66 0:00 0-80 0-00 0-46 0-00

Assuming for J, the values indicated in the second column of

Table 1 we may calculate x with the help of (22) taking also into
account the fact that for mercury close to 7T, H,, = 187(T, — T).
Thus if we use the most reliable value of &, at 4°K we obtain the
result (23). Using the value of J, indicated in ref. 12 for mercury
and for tin we obtain x ~ 0-015, \
' Let us now turn to the question of the destruction of super-
conductivity of a film by a current. For x = 0 the function ¥, in
the presence of a current is given by equation (60), which for d < 1
takes the form

(70)

The field H; as a function of ¥, becomes zero for ¥, = 0 and for
some non-vanishing value of ¥, (if H, = Othen H, = 0for ¥, = 1);
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between these two values of ¥, H, exhibits 2 maximum. In other
words the function ¥, for given H, may according to (70) have
two values. It is easy to see that the superconductivity of a film is
stable only so long as the field H, of the current grows with decrease
of ¥, (in this case the free energy is less than that corresponding to
the same H; but a lower value of ¥,). The critical field H 1c 18
determined from the condition dH,/d¥, = 0, which leads to the

relation
2713;2
f_c=2_\£i 1_(I_{°) , (71)
ch 3'\/3 60 ch:

where H, is the critical field of a given film in the absence of a
current, H, is the external field and J, is the critical current
(H). = (2r[c)J,). In the absence of a field H, we have

Hy 2y2 d
Hy  34/3 6y

For the case of arbitrary relative orientations of H, and H,, where
we must use equations (51) with the boundary conditions (52), it is
easy to see that we obtain the previous equations (60), (70) and (71)
with Hg = H?, + HZ, (the current J is directed along the negative
x-axis, the field H; along the y-axis). It should be noted that it
follows from (63) and (72) for sufficiently thin films that

HH, = ;Hfb. (73)
Thus although the values of H, and H,, for thin films may be
greatly different from H,y, the product H_H,., which is equal for
a massive specimen to HZ is multiplied by a factor 4/3 for the very
thinnest films. Relations (71) and (72) are in qualitative agreement
with experiments from which, however, it is impossible to draw
quantitative conclusions.

Summarising we may indicate that for an experimental verifica-
tion of the theory there is a whole number of possibilities; measure-
ment of the critical field and current for films [(61),(62),(63), and (72)];
measurement of the influence of field on the critical current [see
(71)]; measurement of the magnetic moment [see (65) and (66)1;
measurement of o,,; and, finally, measurement of 6(H,) for bulk

(72
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superconductors [see (36) and (53)]. However, working with ﬁlrps,
a direct determination of x (if it is really small) is in practice
apparently not possible. Thus for the determination of x nqt using
(23) we must either determine o ,.—a quantity which is partlcula.rly
sensitive to x—or carry out exact (~ 1 per cent) measurements with
bulk superconductors of the influence on ¢ of fields of the order
of H,
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